Afiya Ayman

Phone: (346)-7756249, afiya.ayman17@gmail.com, Google Scholar | LinkedIn | Web

SUMMARY

- Six+ years of experience as an academic researcher, developing scalable deep learning and statistical models, optimizing machine learning training and deployment processes for efficiency and impact
- PhD in Information Science & Technology, specializing in Automated Multi-Task Machine Learning
- Strong publication record, featuring contributions to prestigious ML conferences and journals
- Research Focus: Automated Machine Learning, Multi-task Learning, Data Science, Artificial Intelligence for Social Good

EDUCATION

PhD in Information Sciences & Technology, Pennsylvania State University, University Park, PA
 MS in Computer Science, University of Houston, TX
 Aug 2022 - Aug 2025
 Jan 2019 - May 2022

- BSc in Computer Science & Engineering, CUET, Bangladesh Mar 2011 - Oct 2015

RESEARCH EXPERIENCE

Pennsylvania State University – University Park, PA

Research Assistant - Applied Artificial Intelligence Lab, Advisor: Dr Aron Laszka

Aug 2022 - Aug 2025

- Advanced **multi-task learning (MTL)** research by developing **task-affinity-driven grouping strategies**, improving gain prediction accuracy, and **outperforming state-of-the-art methods by** ~7% across computer vision, tabular, time-series, and transportation benchmarks.
- Designed a **two-stage ensemble model** leveraging gradient dynamics to predict MTL performance, enabling cost-effective MTL optimization.
- Applied automated MTL frameworks to **real-world public transit forecasting**, enabling data-driven decision support for high-impact transportation systems.

University of Houston - Houston, TX

Research Assistant - Resilient Networks and Systems Lab, Advisor: Dr Aron Laszka

Jan 2019 - Jul 2022

- Led DOE- and NSF-funded ML research in transportation, energy, and security, producing multiple peer-reviewed publications and influencing transit agency operations.
- Built energy prediction models for electric and diesel transit fleets that reduced MSE by up to **33% compared to baselines**, informing fleet scheduling and routing.
- Developed **neural architecture search (NAS)** methods for transit ridership prediction, jointly optimizing prediction error and model complexity per task, achieving **9% prediction error reduction** over generally optimized models.
- Conducted large-scale NLP and statistical analyses on cybersecurity datasets, uncovering behavioral and security patterns in smart contract development and bug bounty programs.

TEACHING EXPERIENCE

Teaching Assistant, Pennsylvania State University, University Park, PA

Jan 2025 - May 2025

Object-Oriented Programming — Spring 2025: Assisted in instruction, grading, and student support for undergraduate programming course.

Lecturer, School of Science, Engineering & Technology, East Delta University, Bangladesh

Sep 2016 - Dec 2018

- Taught foundational CS and engineering courses, including Programming, Data Structures, Discrete Math, AI, and OS.
- Designed course materials and mentored students on research and coding competitions.

SELECTED PUBLICATIONS

- **Ayman, A.** et al. (2022). Neural Architecture and Feature Search for Predicting the Ridership of Public Transportation Routes. In 8th IEEE International Conference on Smart Computing.
- **Ayman, A.** et al. (2021). Data-driven Prediction and Optimization of Energy Use for Transit Fleets of Electric and ICE Vehicles. In *ACM Transactions on Internet Technology*.
- Sivagnanam, A., **Ayman A.** et al. (2021). Minimizing energy use of mixed-fleet public transit for fixed-route service. In *35th AAAI Conference on Artificial Intelligence (AAAI)*.
- Ayman, A. et al. (2020). Smart Contract Development from the Perspective of Developers: Topics and Issues Discussed on Social Media. In Financial Cryptography and Data Security: FC 2020 International Workshop, Revised Selected Papers, pp. 405–422. Springer.

SELECTED PROJECTS

<u>Machine Learning Research:</u> Led multiple NSF- and DOE-funded research projects in collaboration with city agencies and transit operators, designed machine learning frameworks across diverse domains for solving real-world problems, significantly enhancing the accuracy and efficiency of computational tasks.

Data-driven Energy Optimization for Multi-Modal Transit Agencies (Project Summary):

- Designed and developed a framework for predicting energy consumption for various transit vehicle types using multi-month sensor data, outperforming classic learning algorithms (decision trees and linear regression) by ~ 33% in MSE reduction.
- Achieved <5% prediction error for 6-hour trips, by aggregating sample-level predictions across time-series segments.
- Built a decision tree-based **map-matching** module linking noisy GPS to road geometry with 90% accuracy, enabling elevation and distance features.
- Models trained on multi-month, multi-vehicle telemetry data (6 vehicle types across 8 months); prediction outcomes informed energy-aware routing and scheduling strategies for transit agencies in Tennessee.
- Integrated into a distributed ML pipeline for real-time energy prediction

Neural Architecture & Feature Search for Transit Ridership Prediction (Project Summary):

- Developed a neural architecture and feature search framework for route-specific ridership prediction using Automatic Passenger Count and weather data jointly optimizing prediction error and model complexity
- Evaluated on real-world transit ridership data across ten routes, showing that route-specific neural network architectures and features outperform generally optimized models in prediction accuracy (9% lower error).
- Architectures optimized per route-task consistently yielded the best results compared to hand-designed baselines, demonstrating the benefit of customizing both model complexity and feature set to task-specific patterns in real-world transit systems.

Automated Multi-Task Machine Learning for Ridership Prediction of Public Transportation Routes:

- Proposed an efficient affinity-driven MTL framework that pre-selects task groups to maximize MTL performance gains.
- Achieved 15% lower prediction error than single-task models and ~7% MSE improvement over baseline MTL grouping methods. Validated on real-world public transit ridership data, demonstrating consistent performance gains across task groups.

Relevant Skills: Python, Pytorch, TensorFlow, Sci-kit Learn, Deep Learning, Transformers, Computer Vision

<u>Data Analysis Studies:</u> Collected, integrated, and analyzed data from multiple sources to conduct exploratory data analysis (EDA), topic modeling, and statistical studies.

Impact of COVID-19 on Public Transit Accessibility and Ridership (Project Summary):

- Analyzed 3.3M+ transit boarding events from Nashville and Chattanooga by integrating farebox, GPS, and telemetry
 data; performed temporal, spatial, and socio-economic analyses to assess ridership declines across demographics,
 locations, and time-of-day patterns.
- Identified **persistent COVID-19 impacts** on transit accessibility, informing transit agencies' strategies for equitable service restoration; findings published in *Transportation Research Record*.
- Findings informed adaptive strategies for transit agencies to prioritize equitable service restoration and plan for future disruptions.

Smart Contract Security Awareness Analysis: Investigated security concerns and awareness in the smart contract developer community by analyzing Q&A discussions, blog posts, and associated source code from multiple platforms.

Bug Bounty Ecosystem Analysis: Examined Chromium bug bounty program data, including activity logs and rules descriptions, to characterize participant incentives, behaviors, and vulnerability reporting processes.

Relevant Skills: Python, NLTK, Matplotlib, Numpy, Pandas, Sci-Kit Learn

TECHNICAL SKILLS

- Languages: Python, Java (basic), C++ (basic), SQL, Bash
- ML Libraries: PyTorch, TensorFlow, Keras, Scikit-learn, NLTK, SciPy
- Tools: Git, Docker, Jupyter, VSCode, AWS (basic)
- Methods: Deep Learning, Multi-task Learning, AutoML, NAS, EDA, NLP, Statistical Modeling, Transformers

HONORS/AWARDS

- UH NSM Alumni Scholarship (2021-2022)
- GHC Scholar awarded Student Scholarship for attending Grace Hopper Celebration (GHC'20).
- Rising Star 2020 at CRCS Workshop on AI for Social Impact, Harvard