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Abstract—Due to increasing concerns about environmental
impact, operating costs, and energy security, public transit
agencies are seeking to reduce their fuel use by employing electric
vehicles (EVs). However, because of the high upfront cost of
EVs, most agencies can afford only mixed fleets of internal-
combustion and electric vehicles. Making the best use of these
mixed fleets presents a challenge for agencies since optimizing
the assignment of vehicles to transit routes, scheduling charging,
etc. require accurate predictions of electricity and fuel use.
Recent advances in sensor-based technologies, data analytics, and
machine learning enable remedying this situation; however, to
the best of our knowledge, there exists no framework that would
integrate all relevant data into a route-level prediction model for
public transit. In this paper, we present a novel framework for
the data-driven prediction of route-level energy use for mixed-
vehicle transit fleets, which we evaluate using data collected
from the bus fleet of CARTA, the public transit authority of
Chattanooga, TN. We present a data collection and storage
framework, which we use to capture system-level data, including
traffic and weather conditions, and high-frequency vehicle-level
data, including location traces, fuel or electricity use, etc. We
present domain-specific methods and algorithms for integrating
and cleansing data from various sources, including street and
elevation maps. Finally, we train and evaluate machine learning
models, including deep neural networks, decision trees, and linear
regression, on our integrated dataset. Our results show that
neural networks provide accurate estimates, while other models
can help us discover relations between energy use and factors
such as road and weather conditions.

I. INTRODUCTION

Transportation accounts for 28% of the total energy use

in the U.S. [1], and as such, it is responsible for immense

environmental impact, including urban air pollution and green-

house gas emissions, and may pose a severe threat to energy

security. Switching from personal vehicles to public transit

systems can significantly reduce energy use and environmental

impact. However, even public transit systems require substan-

tial amounts of energy; for example, public bus transit services

in the U.S. are responsible for at least 19.7 million metric tons

of CO2 emission annually [2].
Electric vehicles (EVs) can have much lower environmental

impact during operation than comparable internal combustion

engine vehicles (ICEVs), especially in urban areas. However,

existing EVs have limited battery capacity and hence driving

range. For example, a BYD K9S bus has a nominal driving

range of only around 150 miles. Due to this limited driving

range, the operation of EVs must be carefully planned. Such

planning is especially important to transit agencies that operate

mixed fleets of electric and internal-combustion vehicles.

Firstly, these agencies need to decide which vehicles are

assigned to serving which transit trips. Since the advantage

of EVs over ICEVs varies depending on the route and time

of day (e.g., the advantage of EVs is higher in slower traffic

with frequent stops, and lower on highways), the assignment

can have a significant effect on energy use and, hence, en-

vironmental impact. Secondly, they need to schedule when

to charge electric vehicles during the day considering how

long EVs can operate without recharging and when electricity

prices are lower.

At the crux of this operational optimization is the problem

of accurately predicting the electricity and fuel consumption
of transit vehicles. Such predictions must be contextualized

with a variety of factors, including the type of vehicle, traffic

and weather conditions, road gradient, and type of road (e.g.,

highway vs. residential area) since these factors can have

significant impact on energy use. Clearly, handling all of these

factors using model-driven approaches, which attempt to build

detailed physical models of vehicles, is very challenging.

Recent advances in sensor-based technologies, data analyt-

ics, and machine learning have enabled remedying this situ-

ation by building data-driven predictors of route-level energy

use. However, to the best of our knowledge, there exists no

framework that would integrate all relevant data into a route-

level prediction model for public transit. Such a framework

needs to address many challenges: high volume of unstructured

and irregular data must be stored efficiently, allowing easy

retrieval in subsequent steps; noisy data (e.g., GPS based

locations) must first be cleansed (e.g., corrected or imputed

based on other data sources); heterogeneous data (recorded

at different rates with different precision in different formats)

must be collated into samples that can be fed into training

machine-learning models; etc.

Contributions: In this paper, we present a novel framework

for the data-driven offline prediction of route-level energy use

for mixed-vehicle transit fleets, which we evaluate using data

collected from the bus fleet of CARTA, the public transit

authority of Chattanooga, TN.

• We collect and combine vehicle telemetry data, ele-

vation and street-level maps, weather data, and traffic

data. Our dataset is publicly available at https://
smarttransit.ai/energy.html

• We present a cloud-centric data collection and storage

framework for high-velocity spatiotemporal smart-city data.

Our modular architecture is centered around a topic-based

distributed log with easily extendable, application-specific

structured views.
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TABLE I: Overview of Vehicle Dataset

Vehicle
Type

CARTA
Vehicle ID

Model Start Date End Date Duration

Diesel
Gillig

148, 149, 150

2014 Gillig Phantom

diesel Cummins-Allison
2019-08-22 2019-10-16 56 days

Electric
BYD

751, 752, 753

2016 BYD K9S

35-foot battery-electric
2019-08-01 2019-10-01 61 days

• We present a framework and novel algorithms for cleaning

and integrating time series data from multiple sources into

sets of samples with fixed-dimension feature space.

• We train machine-learning models on this dataset (deep

neural networks, linear regression, and decisions trees) and

study their performance, focusing on the impact of including

or omitting certain data sources.

Organization: The remainder of this paper is organized as

follows. In Section II, we describe our data sources, data col-

lection methods, and data storage architecture. In Section III,

we introduce our data cleansing and integration framework.

In Section IV, we propose machine-learning based prediction

models. In Section V, we present numerical results based

on real-world data. In Section VI, we discuss related work.

Finally, in Section VII, we provide concluding remarks.

II. DATA COLLECTION AND STORAGE

We first provide an overview of the data sources that we use

in our study (Section II-A) and then describe the architecture

of our data storage framework (Section II-B).

A. Data Sources

1) Vehicle Data: To collect data from CARTA’s fleet of

vehicles, we partner with ViriCiti, a company that offers sensor

devices and an online platform to support transit operators

with real-time insight into their fleets. ViriCiti has installed

sensors on CARTA’s mixed-fleet of 3 electric, 41 diesel, and

6 hybrid buses, and it has been collecting data continuously at

1-second (or shorter) intervals since installation. At the time of

this study, we have 2 months of data available for 3 electric

and 3 diesel buses, on which sensors were installed earliest

(see Table I). All electric buses are BYD K9S battery-electric

transit vehicles, while the diesel buses are 2014 Gillig Phantom

series vehicles with Cummins diesel engines.

For each vehicle, we obtain time series data from ViriCiti,

which includes series of timestamps and vehicle locations

based on GPS. For electric buses, we also include features

such as battery current in ampere (A), battery voltage (V ),

battery state of charge, and charging cable status. For diesel

buses, we include fuel level and the total amount of fuel used

over time in gallons. In total, we have already obtained around

6.6 million data points for electric buses and 1.1 million data

points for diesel buses (Table I). Fuel data is recorded less

frequently; hence, there are fewer data points for diesel buses.

2) Elevation, Weather, and Traffic Data: We collect static

GIS elevation data from the Tennessee Geographic Infor-

mation Council [3]. From this source, we download high-

resolution digital elevation models (DEMs), derived from

Real-time
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(Distributed Ledgers)

Structured
Views (NoSQL)

Static Data

Client
Application

Real-Time Model
Inference

Model
Training

Fig. 1: Data architecture overview.

LIDAR elevation imaging, with a vertical accuracy of approx-

imately 10 cm [4]. We join the DEMs for Chattanooga into a

single DEM file, which we then use to determine the elevation

of any location within the geographical region of our study.

We collect weather data from multiple weather stations in

Chattanooga at 5-minute intervals using the DarkSky API [5].

This data includes real-time temperature, humidity, air pres-

sure, wind speed, wind direction, and precipitation.

We collect traffic data at 1-minute intervals using the HERE

API [6], which provides speed recordings for segments of

major roads. Every road segment is identified by a unique

Traffic Message Channel identifier (TMC ID) [7]. Each TMC

ID is also associated with a list of latitude and longitude

coordinates, which describe the geometry of the road segment.

Weather and traffic data was collected from August 1, 2019

to October 1, 2019 to match the time range in Table I.

B. Data Architecture Framework

Next, we outline a general-purpose data architecture frame-

work for storing the various smart-city data streams. The goal

of this framework is to store the data streams in a way that

provides easy access for offline model training and updates as

well as real-time access for system monitoring and prediction.

An overview of our architecture is shown in Figure 1.

The first challenge is persistent storage of the high-velocity,

high-volume data streams. In this study, the real-time data

sources—ViriCiti, HERE, and DarkSky—produce around 100

GiB of data per month. Therefore, we choose a cloud based

design to allow for fast horizontal scalability of the system.

The second concern is that the data itself is highly unstruc-

tured and irregular. Additionally, each data source streams at

varying rates. Therefore we stream each data source to a topic-

based publish-subscribe (pub-sub) layer which persistently

stores each data stream as a separate topic. All replication is

handled at the ledger level, which allows downstream storage

and applications to adapt and expand without concern for

data resiliency. The distributed ledgers are append only logs

and store incoming data in its raw, unstructured form. This

data structure allows for near real-time access to incoming

data, which is optimal for model inference during deployment

and latency-sensitive client applications such as monitoring or

visualization tools. This setup minimizes latency for running

trained models in production in real-time use cases. Data

streams are accessed by unique topic names, and data is

persisted in each ledger, allowing for historical access.
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Fig. 2: Data architecture implementation.

Model-training and inference require data from various

streams to be merged. Typical implementations of stream pro-

cessing architectures require external processing frameworks

such as Apache Spark and Storm [8], [9]. For our system

we instead incorporate a customized stream processing layer

into the pub-sub module. In this layer, data cleansing and

processing functions are applied to the raw data topics and the

processed data is then published to separate reformed topics

that can easily be accessed for prediction or model training.

As shown in Figure 2, we use the pub-sub framework

Apache Pulsar [10] for the topic-based distributed ledger

module. Apache Pulsar provides topic-based messaging. The

storage component of Apache Pulsar relies on Apache Book-

Keeper [11], which allows sharding of data at the topic level.

As the size and velocity of data varies greatly between data

sources, topic level sharding allowed us to evenly distribute

data between storage nodes and thus maximize resources in

the cluster. Cluster state and coordination is managed with

Apache ZooKeeper [12]. The Apache Pulsar system provides

automatic failover and load balancing.

While distributed topic-based ledgers provide fast real-time

access to data and easy data replication, the complexity of

working with spatiotemporal data requires a more structured

representation of the data, particularly for training and batch

analysis. Therefore, we incorporate a structured view com-

ponent into the architecture downstream from the distributed

ledgers. In this sense, structured views are data representations

optimized for specific downstream components. For our use

case, this includes model training and data analysis client

applications. These applications require a data model with

spatial and temporal indexing for efficient data retrieval, which

is particularly important during model training. Additionally,

large-scale data has to be shared between research sites, which

requires a unified structure that is easily transferable. For

this, we use MongoDB [13], which provides native geospatial

indexing and easy large-scale exports in JSON format for

sharing between research sites.

III. DATA PROCESSING FRAMEWORK

Before applying machine-learning models, we have to pro-

cess the time series data recorded from the vehicles by

cleaning it, generating samples with a fixed-dimension feature

space, and integrating with other data sources.

A. Removing Garage Locations and Charging

Since our goal is to predict the amount of energy used for

driving, we remove all datapoints that were recorded when

a bus was (1) waiting in the garage or (2) charging. First,

we remove all datapoints whose GPS-based locations fall in

the geographical area of the CARTA bus garage. Second, for

electric buses, we remove all datapoints whose charging cable

status indicates that the vehicle was charging.

B. Estimating Energy Use for Electric Vehicles

For diesel buses, we can compute the amount of fuel used

between two consecutive datapoints as the change in the total

amount fuel used. For electric buses, we could compute the

amount of energy used as the change in the battery state of

charge (SoC), which is the remaining battery charge as a

percentage of the total capacity. However, SoC values are

recorded with a low precision of only one digit after the

decimal point. To obtain more accurate values, we need to

estimate the amount of energy used based on the recorded

battery current (A) and voltage (V ) values. At any time,

the instantaneous power use of the vehicle (in Watt) can be

computed as A · V . We can estimate the amount of energy

used (in Joule) between consecutive datapoints i− 1 and i as

Ai · Vi · (TSi − TSi−1) , (1)

where TSi is the timestamp of datapoint i (in seconds). Since

current and voltage values are recorded at least once every

second, the above formula provides a high-accuracy estimate.

We confirmed that our estimates are unbiased by comparing

them to changes in SoC over large numbers of datapoints.

C. Mapping GPS Locations to Roads

The recorded vehicle locations are inherently noisy since

they are based on GPS. For example, some locations fall

onto streets or parking lots where a bus cannot even drive.

This noise presents a significant challenge for computing

accurate travel distances and for integrating the time series

with other data sources. To mitigate this noise, we combine

the recorded vehicle locations with a street-level map of

Chattanooga, which we obtain from OpenStreetMap (OSM).

OSM represents each road using a disjoint set of segments,

called OSM features. Specifically, OSM divides each road into

one or more segments along its length and assigns a unique

OSM Feature ID to each one of these road segments.

We map each recorded GPS location to an OSM feature (i.e.,

road segment). For a particular location, we consider the set of

nearby OSM features based on geographical distance. For each

nearby OSM feature, we count how many of the preceding and

following datapoints were also near this feature. Finally, we

select the feature that is near the most datapoints. Algorithm 1

details the process of mapping locations to OSM features.

For each datapoint, we add the OSM Feature ID, which

we use to generate samples (Section III-D) and later to

calculate accurate travel distances (Section III-E). We also add

information from OpenStreetMap regarding the road, such as

the type of the road, whether the road is one-way or two-way,
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whether it is a tunnel, etc. In our dataset, we encounter 14

different road types in total, which include primary, residential,

motorway, etc. For some roads, the type is “unknown’ on

OpenStreetMap, which we treat as a distinct type.

Algorithm 1: Mapping Locations to OSM Features

Input : Locations ← list of locations

Map ← OSM street-level map

WINDOW ← lookahead and -back

Output : Roads → OSM features traveled

Initialization:
NearbyRoads ← [][] /* list of nearby OSM

features for each location */

Roads ← [] /* OSM feature for each location */

for i ∈ {1, . . . , |Locations|} do
Nearby ← Map.NearbyFeatures(Locations[i])
NearbyRoads[i] ← Nearby

for i ∈ {1, . . . , |Locations|} do
if |NearbyRoads[i]| > 0 then

Frequency ← [ ]
for Road ∈ NearbyRoads[i]) do

Count ← 0
for j∈{i−WINDOW, . . . , i+WINDOW} do

for OtherRoad ∈ NearbyRoads[j] do
if Road == OtherRoad then

Count ← Count+ 1

Frequency[Road] ← Count

Selected ← argmaxj Frequency[j]
Roads[i] ← NearbyRoads[i][Selected]

D. Generating Samples

Next, we generate a set of samples from the time series data

by dividing the time series of each bus based on the traveled

road segments. Specifically, for each bus, we treat a maximal

continuous travel on a particular road segment (i.e., particular

OSM feature) as one sample. Each sample includes the starting

datapoint, the ending datapoint, and the sum of the amount of

energy or fuel used between them.

E. Calculating Travel Distance

Since GPS based locations are noisy, we combine them

with OpenStreetMap to calculate the distance traveled for

each sample accurately. First, for each sample, we obtain the

geometry of the corresponding road segment from OSM as

a list of contiguous line segments. Because the bus does not

necessarily travel the complete distance of the road segment

(e.g., it could turn on a different street before reaching the

end of the road segment), we need to identify the first and

last line segments that the bus actually traveled. We calculate

the distance between each line segment and the starting and

end points of the sample, which we denote DistS [] and DistE [],
respectively. Next, we identify the indices of the line segments

that are closest to the starting and end points, which we denote

Algorithm 2: Calculating Travel Distance for Sample

Input : locS ← starting point of sample

locE ← end point of sample

line1, line2, . . . , linen ← line

segments of the OSM feature of the sample

Output : L → distance traveled

for i ∈ {1, . . . , n} do
DistS [i] ← distance(locS , linei)
DistE [i] ← distance(locE , linei)

indexS ← argmini DistS [i]
indexE ← argmini DistE [i]
/* vehicle moving in direction

lineindexS
, lineindexS+1, . . . , lineindexE */

if (indexS < indexE) then
l1 ← distance(locS , second endpoint of lineindexS

)

l2 ← sum length of lineindexS+1, . . . , lineindexE−1

l3 ← distance(first endpoint of lineindexE
, locE)

L ← l1 + l2 + l3
/* vehicle moving in direction

lineindexE
, lineindexE+1, . . . , lineindexS */

else if (indexS > indexE) then
l1 ← distance(locE , second endpoint of lineindexE

)

l2 ← sum length of lineindexE+1, . . . , lineindexS−1

l3 ← distance(first endpoint of lineindexS
, locS)

L ← l1 + l2 + l3
/* indexS == indexE */

else
L ← distance between locS and locE .

indexS and indexE , respectively. Finally, we calculate the

distance traveled for the sample based on the partial distance

on line segment indexS , the full distance of all line segments

in between, and the partial distance on line segment indexE ,

according to Algorithm 2.

F. Removing Erroneous Samples

Even though current and voltage values are almost always

correctly recorded, we did find a few datapoints that have er-

roneous or missing values, which result in extremely low, neg-

ative energy consumption estimates. Note that many electric

vehicles can recharge from braking; so energy consumption

can in fact be negative for some shorter samples when the

bus is slowing down or going downhill. However, erroneous

values result in implausibly low values.

Figure 3 shows the distribution of the energy consumption

values (measured as changes in SoC) for the 62,249 samples

that we obtain for electric vehicles. Of these samples, 99.92%

have energy use values greater than or equal to -0.2. Only 50

samples have values lower than -0.2, constituting 0.08% of the

dataset. We remove these 50 samples from the dataset.

G. Incorporating Elevation

To add road gradients to the samples, we calculate the

difference between the elevation at the start and end points of
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Fig. 3: Distribution of energy consumption values for electric

vehicle samples.

each sample. The change in elevation captures the net potential

energy gained or lost during the sample.

H. Incorporating Weather

Since our goal is to provide predictions for planning transit

operations in advance, we cannot rely on real-time data for

weather. Instead, we compute hourly weather predictions for

each station based on the recorded historical weather data.

Then, for each sample, we compute the distance between the

end point of the sample and each weather station, and we

add the predicted weather features of the closest station to

the sample. Our weather dataset has a number of features, of

which we use temperature (T), humidity (H), visibility (V),

wind speed (W), and precipitation (P).

I. Incorporating Traffic

Our traffic dataset consists of timestamped speed val-

ues recorded for segments of roads in Chattanooga, which

are identified using Traffic Message Channel (TMC) identi-

fiers [7]. Each TMC segment represents a specific, directed

segment of a major road, whose geometry is stored as a

list of geo-points. While the TMC format is adequate for

delivering and storing traffic information, we must also be able

to integrate traffic data with our samples, which reference road

segments using OSM Feature IDs. To this end, we need to

map OSM features to TMC segments. This mapping presents

two challenges. First, OpenStreetMap typically divides roads

into significantly smaller segments than TMC segments, so

matching based on similarity of geometry is difficult. Second,

TMC segments cover only major roads, so most OSM features

cannot be mapped to any TMC segment.

To set up the mapping, we first generate an OpenStreetMap

routing graph. This graph enables us to find the shortest

driving-distance path between any two nodes, which represent

real-world locations, returning a list of edges. Each edge is

labeled with the ID of the corresponding OSM feature (i.e.,

road segment). Next, for the start and end geo-points of each

TMC segment, we find the closest nodes in the OSM routing

graph. Finally, for each TMC segment, we find the shortest

path in the OSM routing graph between the start and end

nodes, and we map each edge (i.e., OSM feature) of the path

to the TMC segment.

However, in some cases, the start and end geo-points of

a TMC segment are matched to OSM nodes on the opposite

sides of a road, which causes errors in the mapping. Therefore,

instead of finding only the nearest OSM node, we find the

four nearest nodes for each start and end geo-point. Then,

we find all the shortest paths between all the start and end

nodes, select the path whose length matches the actual length

of the TMC segment most closely, and map the OSM features

of only this path to the TMC segment. We found that this

process significantly improves the OSM to TMC mapping.

Based on this mapping, we add traffic information to our

samples. Similar to weather, we cannot rely on real-time traffic

for energy use prediction. Instead, we compute average traffic

conditions for each TMC segment for each hour of each day of

the week based on the recorded data, and we use these hourly

averages as traffic predictions. For each sample, we add the

hourly prediction for the TMC segment to which the OSM

feature of the sample is mapped. For samples that cannot be

mapped, we impute special values, which we discuss below.

We add two features from our traffic dataset to each sample:

speed ratio and jam factor. Speed ratio is the actual traffic

speed over the free-flow speed; values around 1 mean light or

no traffic, while values around 0 mean very heavy traffic. Jam

factor indicates the expected quality of travel, ranging from 0

(light or no traffic) to 10 (road closure) [6]. For samples that

cannot be mapped to a TMC segment, we let the speed ratio

and jam factor be 1 and 0, respectively, since road segments

that are missing from our traffic dataset are typically minor

roads, which rarely experience heavy traffic.

IV. ENERGY CONSUMPTION PREDICTION MODELS

We apply three different machine-learning models for pre-

dicting energy consumption: artificial neural network, linear

regression, and decision tree regression. We chose neural

networks for their superior prediction performance, which is

confirmed by our numerical results. In contrast, linear and

decision tree regression do not perform as well, but their

results are easier to understand and explain. For example,

linear regression shows the direct relation between input

variables and target features.

We map categorical variables (e.g., road type) into sets of

binary features using one-hot encoding. We train all three

models to minimize mean squared error (MSE).

A. Artificial Neural Network

We found that different network structures work best for

diesel and electric vehicles. For electric vehicles, the best

model has one input, two hidden, and one output layer. The

input layer has one neuron for each predictor variable. The two

hidden layers have 100 neurons and 80 neurons, respectively.

For diesel, the best model has one input, five hidden, and one

output layer. The five hidden layers have 400, 200, 100, 50,

and 25 neurons, respectively. In all the hidden layers, we use

sigmoid activation, and we use linear activation in the output

layer. We optimize the models using the Adam optimizer [14]

with learning rate 0.001.
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Fig. 4: Mapping without noise.

Fig. 5: Mapping with noise

with 14-meter std. dev.

Fig. 6: Mapping with noise

with 28-meter std. dev.

B. Linear Regression

Our second model is a standard multiple linear regression.

C. Decision Tree

Our third model is decision tree regression [15]. This model

builds a tree structure based on the training samples, where

each node represents a decision based on the value of a

feature variable, and leaf nodes provide predictions. We use the

implementation provided by the scikit-learn Python library.

V. NUMERICAL RESULTS

A. Mapping GPS Locations to Road Segments

We begin by evaluating the accuracy of our algorithm for

mapping noisy locations to OSM features (Algorithm 1). Since

we do not have ground truth for the correct mapping in

our GPS-based dataset, we create a test dataset with known

ground truth. First, we generate routes using a street-level map

and select a set of locations along these routes, which are

precisely on the roads (Figure 4). Then, we add random noise

to these locations, generated using a two-dimensional Gaussian

distribution with zero mean. We vary the standard deviation of

the noise between 1 meter and 110 meters in both directions

(Figures 5 and 6). Finally, we map the noisy locations to road

segments using Algorithm 1 and measure accuracy as the ratio

of correctly mapped locations.

Figures 4 to 6 show locations with different levels of

noise added, highlighting in red the road segments to which

locations are mapped by Algorithm 1. Figure 7 shows the

accuracy of mapping with various levels of noise, ranging

from zero to 110-meter standard deviation in both directions.

As expected, the accuracy of the algorithm decreases as the

level of noise increases. However, for reasonable noise levels,

it performs very well: with 14-meter standard deviation, it can

still correctly map 84.5% of locations.

B. Comparison of Weather, Traffic and Elevation Features

For both electric and diesel buses, we have a set of 26

features in each sample, besides energy use as the target
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Fig. 7: Accuracy of mapping noisy locations to road segments.
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Fig. 8: Prediction error with various sets of features. Note that

electric and diesel energy are measured in different units.

feature. Now, we study which of these features are the most

useful for predicting energy use, and which subset of features

results in the lowest prediction error.

After preparing the samples for both electric and diesel

buses, we randomly split them into training (80%) and test sets

(20%). We use the same split ratio in all subsequent experi-

ments. Since neural networks attain the lowest prediction error

(see Section V-D), we compare features based on this model.

We include vehicle-level data in all experiments, and try

different combinations of weather, elevation, and traffic data.

Figure 8a shows that elevation is by far the most significant

feature for electric vehicles. Traffic data does improve predic-

tion, but its impact is much smaller, especially if elevation

is already included. This can be explained by regenerative

breaking: the energy use of electric vehicles is not impacted

by heavy traffic since they do not lose energy due to frequent

braking. On the other hand, Figure 8b shows that for diesel

vehicles, both elevation and traffic data are significant, and

both need to be included for good performance. Finally, we

find that weather data has the lowest impact on prediction error

for both electric and diesel vehicles.

C. Comparison of Different Weather Features

Since weather data has many features, we also present a

comparison among various weather features to see which ones

help with prediction the most. We consider temperature (T),

humidity (H), visibility (V), wind speed (W), and precipitation

(P) in this comparison.
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Fig. 9: Prediction error with various weather features.
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Fig. 10: Mean square error (MSE) and mean absolute error
(MAE) for electric vehicle samples.

Figure 9 shows prediction error with various combinations

of weather features (with traffic and elevation always in-

cluded). For electric vehicles, we attain lowest error when we

use all five features together (Figure 9a). On the other hand,

for diesel vehicles, we attain lowest error using only three

features: temperature, visibility and precipitation (Figure 9b).

This may be explained by over-fitting when using more

features.

D. Comparison of Prediction Models for Samples

We first evaluate the three machine-learning models based

on how well they predict energy use for samples. Our samples

represent segments of trips that are short in both distance and

duration, presenting a challenging problem for prediction.

Figures 10 and 11 show mean squared error (MSE) and

mean absolute error (MAE) for the three models. Based

on MSE, the artificial neural network (ANN) outperforms

the other two models for both electric and diesel vehicles.

However, based on MAE, ANN outperforms decision trees

(DT) for diesel vehicles but not for electric vehicles. Note

that we optimized all models to minimize MSE, which can

explain the slightly inferior performance of ANN for MAE.

We have not encountered any overfitting since our training and

testing errors were consistent for each model.

E. Comparison of Prediction Models for Longer Trips

Finally, we study how well our models perform with respect

to predicting energy use for longer trips. First, we divide our

time series into longer trips, varying the length of the trips
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Fig. 11: Mean square error (MSE) and mean absolute error
(MAE) for diesel vehicle samples.
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Fig. 12: Prediction error for longer trips with neural network

(ANN), decision tree (DT), and linear regression (LR).

between 10 minutes and 6 hours. For each trip, we generate

a set of samples (as described in Section III), use our models

to predict energy use for each sample, and then compare the

sum of these predictions to the actual energy use of the trip.

Figure 12 shows the relative prediction error for trips of

various lengths. For each length, we plot an average error value

computed over many trips. We see that relative prediction error

is generally lower for longer trips; this is expected as the

individual errors of large numbers of samples cancel each other

out with an unbiased prediction model. For diesel vehicles, we

find that the ANN outperforms the other models significantly

for all trip lengths. On the other hand, for electric vehicles,

ANN and DT perform equally well for most trip lengths.

VI. RELATED WORK

Our study is most closely related to the work of Cauwer et

al. and of Wickramanayake and Bandara. Cauwer et al. [16]

use a cascade of ANN and multiple linear regression models as

a data-driven energy-consumption prediction method for EVs.

Their study uses vehicle monitoring data as time series of

tuples for two types of vehicles with location, vehicle speed,

and energy-consumption information, such as battery voltage,

current, and SoC. Their dataset also includes road network

data, weather data, and an altitude map. Our approach has

some similarity to this study. However, we also use traffic

data in our model, which we find to be very helpful with

diesel prediction. Wickramanayake and Bandara [17] assess

three different techniques for fuel consumption prediction of
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a long-distance public bus. Their time series tuples include

GPS location, bearing, elevation, distance travelled, speed, ac-

celeration, ignition status, battery voltage, fuel level, and fuel

consumption. The authors compare the performance among

two ensemble models, random forest and gradient boosting,

and one ANN model. However, their study lacks critical

parameters, such as road information, traffic, weather, etc.

Perrotta et al. [18] compare the performance of SVM,

RF, and ANN in modelling fuel consumption of a large

fleet of trucks. Their features include gross vehicle weight,

speed, acceleration, geographical position, torque percentage,

revolutions of the engine, activation of cruise control, use

of brakes and acceleration pedal, measurement of travelled

distance, fuel consumption. The study also combines some

road characteristics. From the comparison of the RMSE, MAE,

and R2 score of the prediction, RF gives the best performance.

Nageshrao et al. [19] models the energy consumption of

electric buses based on time-dependent factors such as ambient

temperature and speed, battery capacity, total mass, battery

parameters, etc. They use a NARX based ANN time series

predictor to predict the state of charge of the battery. Gao et

al. [20] discuss an adaptive wavelet neural network (WNN)

based energy prediction. The study uses features such as day

type, temperature, rainfall, the travelled distance, and clarity

of the atmosphere. The study groups the trip days based on

similar attributes, using Grey Relational Analysis (GRA) and

then implements the Adaptive WNN.

Some researchers propose methods for optimizing the op-

erations of vehicle fleets. Wang et al. [21] design a real-

time charging scheduling system, called bCharge, for electric

bus fleets. They implement the system with the real-world

streaming dataset from Shenzhen, China, including GPS data,

bus stop data, bus transaction lines, bus charging station data,

and electricity rate data. Murphey et al. [22] propose the

ML EMO HEV framework for energy management optimiza-

tion in an hybrid-electric vehicles. Their framework first uses

a ANN to model the road environment of a driving trip as

a sequence of different roadway types and traffic congestion

levels. Then, it uses an additional ANN to model the driver’s

instantaneous reaction to the driving environment. Finally, the

framework uses an additional set of ANN to emulate the

optimal energy management strategy.

VII. DISCUSSION AND CONCLUSION

We presented a framework for the data-driven prediction of

the energy use of electric and internal-combustion vehicles,

which we evaluated on real-world data collected from a

transit fleet. Our results show that it is possible to collect,

aggregate, and process heterogeneous transit data effectively.

We found that generally, artificial neural networks perform

best for predicting energy use. For diesel buses, we achieve

best results using 21 predictor variables: travel distance, 14

road-type features, elevation change, 3 weather features, and

2 traffic features. For electric buses, we achieve best results

using 23 predictor variables, which include 2 more weather

features. We also found that relative prediction error is lower

for longer trips, which facilitates the long-term planning of

transit operations.
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